Ultrasensitive terahertz/infrared waveguide modulators based on multilayer graphene metamaterials
نویسندگان
چکیده
O R IG IN A L P A P ER Abstract This paper studies and classifies the electromagnetic regimes of multilayer graphene-dielectric artificial metamaterials in the terahertz/infrared range. The employment of such composites for waveguide-integrated modulators is analysed and three examples of novel tunable devices are presented. The first one is a modulator with excellent ON-state transmission and very high modulation depth: > 38 dB at 70 meV graphene’s electrochemical potential (Fermi energy) change. The second one is a modulator with extreme sensitivity towards graphene’s Fermi energy a minute 1 meV variation of the latter leads to > 13.2 dB modulation depth. The third one is a tunable waveguide-based passband filter. The narrow-band cut-off conditions around the ON-state allow the latter to shift its central frequency by 1.25% per every meV graphene’s Fermi energy change.
منابع مشابه
Ultrasensitive Terahertz Biosensors Based on Fano Resonance of a Graphene/Waveguide Hybrid Structure
Graphene terahertz (THz) surface plasmons provide hope for developing functional devices in the THz frequency. By coupling graphene surface plasmon polaritons (SPPs) and a planar waveguide (PWG) mode, Fano resonances are demonstrated to realize an ultrasensitive terahertz biosensor. By analyzing the dispersion relation of graphene SPPs and PWG, the tunable Fano resonances in the terahertz frequ...
متن کاملTransmission Properties of the Periodic Structures Based on Graphene Nonlinear Optical Conductivity in a Terahertz Field
By developing the terahertz (THz) technology, in addition to generators and detectors of THz waves, the existence of some tools such as modulators and filters are needed. THz filters are important tools for various applications in the field of chemical and biological sensors. Linear and nonlinear optical properties of the graphene have attracted lots of attention. In fact graphene exhibits vari...
متن کاملGraphene-based tunable hyperbolic metamaterials and enhanced near-field absorption.
We investigate a novel implementation of hyperbolic metamaterial (HM) at far-infrared frequencies composed of stacked graphene sheets separated by thin dielectric layers. Using the surface conductivity model of graphene, we derive the homogenization formula for the multilayer structure by treating graphene sheets as lumped layers with complex admittances. Homogenization results and limits are i...
متن کاملTunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region
Plasmonic response in graphene-based metamaterials show great potential for terahertz (THz) wave manipulation. In this work, we study the tunable surface-plasmon-polariton-like modes based on graphene complementary split ring resonators (CSRRs) in THz region. Our study suggests that these modes can be generated by graphene plasmonic metamaterials due to the diffraction coupling of surface plasm...
متن کاملRole of Transient Reflection in Graphene Nonlinear Infrared Optics
Understanding the optical response of graphene at terahertz frequencies is of critical importance for designing graphene-based devices that operate in this frequency range. Here we present a terahertz pump−probe measurement that simultaneously measures both the transmitted and reflected probe radiation from multilayer epitaxial graphene, allowing for an unambiguous determination of the pump-ind...
متن کامل